Personal tools


Project AQUA
Research Area Materials Science
Principal Investigator(s) Dr. Angelos Michaelides
Prof. Dario Alfe
  • Chinese Academy of Sciences, Institute of Physics, China
  • University College London, London Centre for Nanotechnology, UK
  • University College London, Department of Earth Sciences, UK


The interaction of water with carbon is central to an almost endless list of scientific areas. For example, the adsorption of water on carbon nanotubes is relevant to the properties and function of nanotubes in biological media and the water-graphite interaction is key to lubrication and to chemical reactions in the interstellar medium. Despite the ubiquity and importance of water-covered carbon, it is remarkable that the most fundamental and important question of how strong the bond between water and carbon is, is neither well-established experimentally nor theoretically. With this project we plan to tackle this question with a novel set of ’first principles’ (parameter free) quantum Monte Carlo simulations for water on grapheme and on a carbon nanotube. The simulations will be carried out with the highly efficient parallel code CASINO; leading to the first reliable theoretical estimates of the strength of the bond between water and two forms of carbon. The data to come out of this joint UK-China project will be of tremendous interest to the large and active international scientific community focussed on understanding the properties of different forms of carbon. In addition, it will facilitate future innovation in the development of cheaper computational approaches (e.g. density functional theory and parameterised potentials) for treating weakly interacting physisorption systems.
This project, which is impossible without the computational capacity offered by the DEISA extreme computing initiative, will push the first principles calculation of surface processes to a new level of sophistication and in so doing propel European science to the forefront of capability computing in materials science.

Document Actions