Personal tools

SIRE

Project SIRE
Research Area Materials Science
Principal Investigator(s) Philippe Sautet
Institution(s)
  • Institut Français du Pétrole, France
  • Ecole Normale Supérieure de Lyon, France
  • University of Montpellier II, France
  • Ecole Nationale des Ponts et Chaussées, France

Abstract

The breaking and formation of chemical bonds is at the crossroad of a large number of natural or industrial processes, not only in chemistry but also in life, materials, earth and environment sciences. Reactions at the solid/gas or solid/liquid interface have a special importance. However, chemical reactivity is a quantum phenomenon, which is difficult to model. Ab initio methods are precise but limited to a small number of atoms. Reactive force fields have started to be developed, but their accuracy is still insufficient. Reactivity of complex molecules on surfaces also requires the exploration of potential energy surfaces for a large number of degrees of freedom.
The SIRE project has been financed by the French ANR agency for 3 years (project ANR-06-CIS6-014, 2007-2009) and it aims, by a combination of mathematics and theoretical chemistry, at developing new simulation methods for reactive processes at surfaces: search of reaction paths, including environment, temperature and pressure effects, new reactive force fields, methods for electrochemistry. These codes are designed for highly parallel computers. At half way in the project, new innovative modules have been developed for reaction pathway searches (CARTE), for electronic structure calculations at the electrochemical interface (Metelec), and are coupled to various academic electronic structure codes (VASP, PWSCF, CPMD).
In the second half of the project (September 2008 - December 2009) these methods will be applied to selected challenges in heterogeneous catalysis and in electrochemistry, with strong societal or industrial implications. These applications are very innovative for the realism of the description of the catalytic system, but very computationally intensive. ANR did not finance the CPU time for these applications but recommended us to submit applications to European facilities. This is clearly the purpose of this proposal, which gathers 4 institutions and 24 researchers, including 6 post-doc or students dedicated to the project. We wish to underline that this application to DECI is especially timely, since last year the methods were not ready, and since in 2010 the SIRE project will be finished.

Document Actions